Thermal Image Enhancement using Bi-dimensional Empirical Mode Decomposition in Combination with Relevance Vector Machine for Rotating Machinery Fault Diagnosis

نویسندگان

  • Van Tung Tran
  • Fengshou Gu
چکیده

In this study, a novel fault diagnosis system for rotating machinery using thermal imaging is proposed. This system consists of bi-dimensional empirical mode decomposition (BEMD) for image enhancement, a generalized discriminant analysis (GDA) for feature reduction, and a relevance vector machine (RVM) for fault classification. Firstly, the thermal image obtained from machine conditions is decomposed into intrinsic mode functions (IMFs) by using BEMD. At each decomposed level, the IMF is expanded and fused with the residue by grey-scale transformation and principal component analysis fusion technique, respectively. The enhanced image is then formed by the improved IMFs in reconstruction process. Subsequently, feature extraction is applied for the enhanced images to obtain histogram features which characterize the thermal image and contain useful information for diagnosis. The high dimensionality of the achieved feature set can be reduced by GDA implementation. Moreover, GDA also assists in the increase of the feature cluster separation. Finally, the diagnostic results are performed by RVM. The proposed system is applied and validated with the thermal images of a fault simulator. A comparative study of the classification results obtained from RVM, support vector machines, and adaptive neuro-fuzzy inference system is also performed to appraise the accuracy of these models. The results show that the proposed diagnosis system is capable of improving the classification accuracy and efficiently assisting in rotating machinery fault diagnosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent Fault Diagnosis System using BEMD based Thermal Image Enhancement And Support Vector Machines

This study proposes an investigation of a novel thermal image enhancement based on bi-dimensional empirical mode decomposition (BEMD) and applies this method for rotating machinery fault diagnosis system. In this work, thermal images of machine conditions are firstly decomposed into intrinsic mode functions (IMFs) by utilizing BEMD. At each decomposition level, the IMF is expanded and fused wit...

متن کامل

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Fault Diagnosis for Rotating Machinery: A Method based on Image Processing

Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based...

متن کامل

Correlated EEMD and Effective Feature Extraction for Both Periodic and Irregular Faults Diagnosis in Rotating Machinery

Intelligent fault diagnosis of complex machinery is crucial for industries to reduce the maintenance cost and to improve fault prediction performance. Acoustic signal is an ideal source for diagnosis because of its inherent characteristics in terms of being non-directional and insensitive to structural resonances. However, there are also two main drawbacks of acoustic signal, one of which is th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016